
Bigger bang with fewer spritesBigger bang with fewer sprites
Tristan Lorach

NVIDIA CONFIDENTIAL

Overview

Current Explosion effects
New type of explosions
Back to procedural procedural noise & texturing
Details on the example
The demo

NVIDIA CONFIDENTIAL

Actual explosion effects

Most of the explosions are 2D billboards
easy to implement
Just a quad or a sprite for one element
Billboard contains an animation from a video
use a particle system to add complexity

Drawbacks:
Billboards intersect badly with the 3D scene
Pay attention and you’ll find out the same patterns
2D billboard aren’t volumes, evens through particles

NVIDIA CONFIDENTIAL

Actual explosions

Our purpose isn’t to replace typical technique
Our purpose is to find out new technique for
specific cases
Billboards Explosions are good for small ones:

Small size help to hide artifacts
Fast explosion fooling the eye about details

But what about big explosions (in space, atomic) ?

NVIDIA CONFIDENTIAL

New type of explosion

Some explosions may converge to a solid object
May interact with the scene
Must respect the floor and other surfaces (explosion
into a corridor…)
The eye wants to see it as a volume
Can be the central topic of the scene

Explosions can take various forms
Sphere, cone and complex mesh (mushroom)

Explosions must tend to be unique in its details

NVIDIA CONFIDENTIAL

New type of explosion

New GPU’s allows us to do so
At vertex level: displace the vertices and pre-
compute some parameters
At fragment level: use procedural noise either from
scratch or through 3D (and 1D/2D) textures

Still, the CPU will keep the job of providing the
basic mesh structure

Provide a simple growth (our example)
Provide a physical control of the mesh

CPU for global behavior & GPU for near-surface
behavior

NVIDIA CONFIDENTIAL

Drawbacks of this new technique

More expensive in computation : more triangles,
complex vertex & fragment processing
Difficult to fine-tune the parameters

Everything is almost arbitrary
Need artists to realize good simulation

Any math won’t be enough
We cannot use a video of fire
The evolution in time must behave correctly
Colors at fragment level are arbitrary. New ideas are
welcome

NVIDIA CONFIDENTIAL

Procedural noise for explosions

Noise is the solution
Provide a near-unique result for each explosion
Fooling the eye thanks to complexity

Noise can
displace the vertices
contribute to the color blending

Noise can be real-time calculated (Perlin)
Noise can be stored into textures (3D)
Fractal sum of noise is good to approach nature
phenomenon.

NVIDIA CONFIDENTIAL

Primitives for an explosion

Plasma disc
Illustrating the explosion’s shockwave

The core of the explosion
A growing sphere or a more complex mesh

Some secondary explosion sources
Some material going out of the explosion
Some optical distortion from the heat of the
shockwave
All can be using procedural texturing & and
procedural noise

NVIDIA CONFIDENTIAL

Disadvantages of Procedural Texturing
& Procedural vertex displacement

Compact in memory
- code is small (compared to textures)
No fixed resolution
- "infinite" detail, limited only by precision
Unlimited extent
- can cover arbitrarily large areas, no repeating
Parameterized
- can easily generate a large no. of variations on a
theme
Solid texturing (avoids 2D mapping problem)
We can add a 4th dimension (time)

NVIDIA CONFIDENTIAL

Disadvantages of Procedural Texturing
& Procedural vertex displacement

Computation time
Hard to code and debug
vertices are Displaced in the rendering pipeline.

Resulting transformation cannot interact with the
scene
implement the same procedure in the CPU to
compute some values before the GPU

NVIDIA CONFIDENTIAL

Ideal Noise Characteristics

Can’t just use rand()! An ideal noise function:
produces a repeatable pseudorandom value as a
function of its input (same input -> same output)
has a known range (typically [-1,1] or [0,1])
doesn't show obvious repeating patterns (i.e. period
is large)
is invariant under rotation and translation

We want this noise to be smooth

NVIDIA CONFIDENTIAL

What does Noise look like?

Imagine creating a big block of random numbers
and blurring them:

NVIDIA CONFIDENTIAL

What does Noise look like?

Random values at integer positions
Varies smoothly in-between. In 1D:

1

0

1

-1

1 2 3 4 5 6 7 8 x

noise(x)

This is value noise, gradient noise is zero at
integer positions

NVIDIA CONFIDENTIAL

Spectral Synthesis

Noise by itself is not very exciting
By summing together multiple noise signals at
different frequencies we can produce more
interesting patterns with detail at several scales
This is like Fourier synthesis (summing sine
waves)
Each layer is known as an “octave” since the
frequency typically doubles each time
Increase in frequency known as “lacunarity” (gap)
Change in amplitude/weight known as “gain”

NVIDIA CONFIDENTIAL

Fractal Sum

Weighted sum of several layers of noise with
increasing frequency and decreasing amplitude
Fractal because of self-similarity at different scales
Also known as “Fractional Brownian Motion” (fBm)
Typically, octaves >= 4, lacunarity ~= 2.0, gain = 0.5
float fractalSum(float3 p, int octaves, float lacunarity, float gain)
{
float sum = 0;
float amp = 1;
for(int i=0; i<octaves; i++) {
sum += amp * noise(p);
p *= lacunarity;
amp *= gain;

}
return sum;

}

NVIDIA CONFIDENTIAL

Fractal Sum

=

+1/41/2

+1/8 +1/16

Freq = 1 Freq = 2

Freq = 4 Freq = 8

NVIDIA CONFIDENTIAL

Turbulence

Ken Perlin’s trick – assumes noise is signed [-1,1]
Exactly like fBm, but take absolute value of noise
Introduces discontinuities that make the image
more “billowy”

float turbulence(float3 p, int octaves, float lacunarity, float gain)
{
float sum = 0;
float amp = 1;
for(int i=0; i<octaves; i++) {
sum += amp * abs(noise(p));
p *= lacunarity;
amp *= gain;

}
return sum;

}

NVIDIA CONFIDENTIAL

Turbulence

=

NVIDIA CONFIDENTIAL

Vertex Shader Noise

We don’t have texture lookups in the vertex shader
Vertex noise used for procedural displacement of
vertices
Calculating perturbed normals isn’t obvious

We could calculate Normal at fragment level with
DDX, DDY:

float3 dx = (ddx(IN.worldpos.xyz));
float3 dy = (ddy(IN.worldpos.xyz));
float3 N = normalize(cross(dx,dy));

But this will make the triangles appear
In explosions, we’ll avoid this

NVIDIA CONFIDENTIAL

Vertex Shader Noise

Uses permutation and gradient table stored in
constant memory (rather than textures)
Combines permutation and gradient tables into one
table of float4s – (g[i].x, g[i].y, g[i].z, perm[i])
Table is duplicated to avoid modulo operations in
code
Table size can be tailored to application
Compiles to around 70 instructions for 3D noise

NVIDIA CONFIDENTIAL

Vertex Shader Noise

p=(k+P[(j+P[i])%n])%n for 8 points around

G

Pt

dot()

dx

dy

dz

{dx’,dy’,dz’}= scurve({dx’,dy’,dz’})

noise = lerp dot products by {dx’,dy’,dz’}

d

1

2

3

4

NVIDIA CONFIDENTIAL

Typical Vertex Shader Noise Cg Code
float noise(float3 v, const uniform float4 pg[B2])
{

float3 i = frac(v * BR) * B; // index between 0 and B-1
float3 f = frac(v); // fractional position
// lookup in permutation table
float2 p;
p[0] = pg[i[0]].w;
p[1] = pg[i[0] + 1].w;
p = p + i[1];
float4 b;
b[0] = pg[p[0]].w;
b[1] = pg[p[1]].w;
b[2] = pg[p[0] + 1].w;
b[3] = pg[p[1] + 1].w;
b = b + i[2];
// compute dot products between gradients and vectors
float4 r;
r[0] = dot(pg[b[0]].xyz, f);
r[1] = dot(pg[b[1]].xyz, f - float3(1.0f, 0.0f, 0.0f));
r[2] = dot(pg[b[2]].xyz, f - float3(0.0f, 1.0f, 0.0f));
r[3] = dot(pg[b[3]].xyz, f - float3(1.0f, 1.0f, 0.0f));
float4 r1;
r1[0] = dot(pg[b[0] + 1].xyz, f - float3(0.0f, 0.0f, 1.0f));
r1[1] = dot(pg[b[1] + 1].xyz, f - float3(1.0f, 0.0f, 1.0f));
r1[2] = dot(pg[b[2] + 1].xyz, f - float3(0.0f, 1.0f, 1.0f));
r1[3] = dot(pg[b[3] + 1].xyz, f - float3(1.0f, 1.0f, 1.0f));
// interpolate
f = s_curve(f);
r = lerp(r, r1, f[2]);
r = lerp(r.xyyy, r.zwww, f[1]);
return lerp(r.x, r.y, f[0]);

}

1

2

3 4

NVIDIA CONFIDENTIAL

Pixel Shader Noise

Almost the same as Vertex shader
Gradient noise over R3, scalar output
Uses 2 1D textures as look-up tables:

Permutation texture – luminance alpha format, 256
entries, random shuffle of values from [0,255].
Holds p[i] and p[i+1] to avoid extra lookup.
Gradient texture – signed RGB format, 256 entries,
random, uniformly distributed normalized vectors

Compiles to around 50 instructions
But here we won’t use Such noise at fragment level

We’ll prefere 3D texture noise instead (faster)

NVIDIA CONFIDENTIAL

Pixel Shader Noise using 3D Textures

Pre-compute 3D texture containing random values
Pre-filtering with cubic filter helps avoid linear
interpolation artifacts
4 lookups into a single 64x64x64 3D texture
produces reasonable looking turbulence
Uses texture filtering hardware
Anti-aliasing comes for free via mip-mapping
Period is low

NVIDIA CONFIDENTIAL

Pixel Shader Noise using 3D Textures

Cubic filtering : f(x) =

X = x0*f(1+x,a)+x1*f(x,a)+x2*f(1-x,a)+x3*f(2-x,a); (a=-0.75)

NVIDIA CONFIDENTIAL

Various 3D noise textures

Noise
(bicubicNoise3D(fx, fy, fz) + 1.0f)* 0.5f;

Abs Noise
(fabs(bicubicNoise3D(fx, fy, fz)));

NVIDIA CONFIDENTIAL

Various 3D noise textures

Raw Noise
noise3D(fx, fy, fz) + 1.0f) * 0.5f

Veins
1 - 2 *(fabs(bicubicNoise3D(fx, fy, fz)))

NVIDIA CONFIDENTIAL

Applying color table for noise

Perturb the color table with the noise (create
smoke/energy trail or natural spread effect)

Get a new perturbed texcoord
s = clamp(IN.texCoord - (IN.texCoord * (noise*0.5+0.5)), 1/256.0,255.0/256.0);

Lerp between perturbed & non-perturbed texcoords
s = lerp(s, IN.texCoord, IN.texCoord);
texture = f4tex1D(BaseTexture, s) * NoiseAmp;

NVIDIA CONFIDENTIAL

Our Example: Explosion core

main part of the explosion
Noise will be used to displace the vertices
3D noise textures will be used to represent various
burning stages in the fireball.
The idea is to play with various parameters to
make the object grow like an explosion.

to represent the dilatation of the gas
to represent the rotational behavior of a gas
to differentiate hot part from warm parts

Use either a sphere or any other shape

NVIDIA CONFIDENTIAL

Our Example: Various shapes

NVIDIA CONFIDENTIAL

Demo: Explosion core at Vertex level

1st Displacement is done along the normal by
fetching the noise value at the Vtx world pos
2nd, 3rd and 4th displacement along the Normal

but we’ll first rotate the noise space before fetching
the value
Rotation center is the original vertex position

This effect will create a rotational behaviour of the
noise.

Noise2

Noise1

Noise3

NVIDIA CONFIDENTIAL

Demo: Explosion core at Vertex level

Computing new vertex and passing data to the
fragment program
Each 4 octave’s noise values are passed by one
interpolator : x, y, z and w for each
The total normalized displacement (i.e. fractal sum)
value is passed as a diffuse color component
Passing the displaced vertex coordinate

NVIDIA CONFIDENTIAL

Demo: Explosion core at Fragment level

Using fractal sum of 3D texture noise, BUT:
Instead of having a gain=0.5 at each octave, we’ll use 4
octave’s noise values from the Vertex program.
This will emphasize some frequencies needed to create the
burning parts.
each octaves will appear/disappear like waves

l = tex3D(NoiseTexture, IN.worldpos.xyz)*IN.noisescalars.x;
float3 scaledpos = IN.worldpos.xyz * 2.0;
l += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.y;
scaledpos *= 2.0;
l += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.z;
scaledpos *= 2.0;
l += tex3D(NoiseTexture, scaledpos) * IN.noisescalars.w;

NVIDIA CONFIDENTIAL

Demo: Explosion core at Fragment level

The total normalized displacement interpolator
used to fetch a 1D color table

0 for the smoke color, 1 for a bright color (fire)
through animated scale-bias to change the look

Use one of the 4 octave’s noise values (the 2nd) to
interpolate between the previous 3D noise and the
color from 1D texture
Make it sharp by X=X^3.
Will create 2 parts

very hot (3D noise for the burning magma)
cold : the smoke from 1D color table

NVIDIA CONFIDENTIAL

Demo: Additional explosions

The main object is displaced along its normals.
We would like some concavity.
Not easy and expensive to get the partial derivatives
for the noise field to change the normals.

Add some additional explosions like any particle
systems

Lower Tessellation for smaller objects with shorter
lifetime

We must fit to the surface of the main explosion
We must implement the same algorithm as the
Vertex program
get randomly a point onto the noisy surface when a
particle is being born

NVIDIA CONFIDENTIAL

Demo: Plasma Disc effect

Disc is a simple strip.
Everything at the fragment level. Very few polygons
Disc is 2D, so using a 2D+time noise function (x,t,z)
Noise is Made of Absolute noise values
A color Range with lerp() operation can create the bright
border at R1 and the fadeout at R2

R1

R2
s = clamp(IN.texCoord - (IN.texCoord *

(noise*0.5+0.5)),
1/256.0,255.0/256.0);

s = lerp(s, IN.texCoord, IN.texCoord);

texture = f4tex1D(Tex, s) * NoiseAmp;

NVIDIA CONFIDENTIAL

Demo: Shockwave heat effect

Compositing 2 P-buffers to the frame-buffer
First P-Buffer: the RGB scene
Second P-Buffer: the 2D offset map using R & G
components made from invisible parts of objects

invisible part of the disc : a cylinder around the disc
Fade out vertically with 1D texture
Fade out horizontally by lighting from the eye (dot
product) and getting exponential value (lit(1,eye_dot_n,5))
2D Offset scale is depending on the perspective.

Any object could contribute to this perturbation

NVIDIA CONFIDENTIAL

Demo: Shockwave heat effect

Invisible cylinder of noise

NVIDIA CONFIDENTIAL

To do next…

Here : just a taste of what we can do…
Add fourier for low frequencies
add physical behavior for the explosion sphere

interact with the scene
explosion spread with collisions of wall & floor

inside a corridor
along a landscape

work on transparency, depending on the density
glow, lighting effects
…many optimizations to find

NVIDIA CONFIDENTIAL

References

“An Image Synthesizer”, Ken Perlin, Siggraph 1985
“Improving Noise”, Ken Perlin, Siggraph 2002
“Texturing & Modelling, A Procedural Approach”
Ebert et al.
“Advanced Renderman, Creating CGI for Motion
Pictures”, Anthony A. Apodaca, Larry Gritz
“Animating Suspended Particles Explosions”,
Bryan E.Feldman, James F.O’Brien, Okan Arikan
“Smoke Simulation For Large Scale Phenomena”,
N. Rasmussen, D. Nguyen, W. Geiger, R. Fedkiw

NVIDIA CONFIDENTIAL

?

tlorach@nvidia.com

